汽车牌照是正规车辆的唯一“身份”标识,车牌自动识别技术是在汽车不作任何改动的情况下实现汽车“身份”的自动登记及验证,这项技术已经应用于公路收费、停车管理、交通诱导、交通执法、公路稽查、车辆调度、车辆检测等各种场合。
车牌识别系统主要由三个模块组成:触发:1、即前端设备数据的入口处,如速度测量系统。2、图像处理部分:分为图像采集,车牌定位,字符分割和字符识别四个部分。3、数据,后台应用系统和无线传输系统将被处理,如车辆管理系统,智能停车场系统,等。
以下是车牌识别各模块工作模式介绍:
一、前端CCD摄像机:
原始图像获取
由CCD摄像机及辅助照明装置组成。获取图像质量的好坏直接影响到后端处理和识别的效果. 要获得比较清晰的图像, 需要考虑许多影响图像质量的因素, 主要包括: 摄像头和图像卡的选取, 摄像机的位置标定, 汽车的车速, 出入单位的汽车车队之间的距离, 天气、光线等情况对摄像机所摄图像曝光量的影响。
判断是否有车辆进入观测区
采用图像差值法来判断监测区是否有目标进入,即首先将视频图像灰度化,然后比较两幅图像对应像素点的灰度值,看是否有变化以及变化有多少。图像差分只能测定监测区中是否有物体经过,但它是否交通车辆,尚未可知。鉴于图像差分所产生的噪声、行人、自行车比汽车所占区域小得多,设计尺度滤波器将尺度较小的物体及噪声滤掉。
二、车牌定位及预处理
完成基本的车牌定位后,还需要对车牌进行一些基本的预处理。包括倾斜矫,正与铆钉和边框的去除。
(1)车牌边框和铆钉的去除
先验知识:对于标准车牌,字符间间距为12mm,第2、3个字符间间距为34mm,其中,中间小圆点l0mm宽,小圆点与第2、3个字符间间距分别为12mm。在车牌边框线的内侧,通常有四个铆钉,他们不同程度地与第2个字符或第6个字符粘连,如果不去除铆钉,将给第2和第6在字符的识别造成困难。
(2)车牌字符的倾斜矫正
车牌字符分割的难点在有些车牌是倾的,直接分割效果不好,需要做校正。首先求出车牌的倾斜率,根据此斜率对车牌做旋转校正。
将车牌图像进行二值化后,图像仅黑、白二值。白色像素点(灰度值255)取1,黑色像素点(灰度值0)取0,这里采用的是白底黑字模式。对车牌图像逐行进行从内向外式扫描,当扫描到车牌图像某一行中,白色像素点的宽度大于某一阀值时(第一个符合条件的行),则认为是车牌字符的边沿处,切除这一行以上或以下的所有行。
三、车牌字符分割
车牌字符分割的主要算法。在此,由于我们的知识有限就不对这些算法做具体介绍了。
四、字符识别方法
字符识别是车牌识别的核心部分。常见车牌字符识别算法且比较简单普遍的算法有以下两种
模板匹配车牌字符识别
中国车牌的字符模板分为汉字、英文字母和数字模板,由统计方法构造并保存到数据库中。模板匹配是将字符模板和标准化了的车牌字符进行匹配来识别字符。
特征匹配车牌字符识别
车牌识别的方法中,可利用的字符特征很多,大致可以分为结构特征、象素分布特征及其他特征。
本文由科马电子http://www.parks8.com小编整理发布
上一篇:
停车场系统道闸分类
下一篇:
车牌识别系统在停车场管理中的应用
<< 返回